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INTRODUCTION 

 
 Jordan(1871a) essentially gives a table containing the numbers of conjugacy classes of maximal irreducible 

soluble subgroups of ),( pnGL  for 
6

10
n

p
. He claims there are five such classes in ),3,4(GL but there are only 

four
,
(see to chapter 6). This error is likely to lead to errors for larger degrees . Also

,
the second and third entries in 

the last row of this table should be swapped. 

 Dickson(1901
,
chapter 12

,
pp. 260-287) determine all subgroup of ),2( kpPSp   

(for a determination in modern terminology
,
see Huppert(1967

,
chapter 2

,
section 8

,
 pp.191-214) and in (1904) he 

determines all Subgroups of )3,4(PSp . 

 Mitchell(1914) determines the maximal subgroups of ),4( kpPSp  for odd 
p

. Liskovec(1973) classifies the 

maximal irreducible },{ qp -subgroups of ),( 2 prGL ,
 where 

q
 and r  are primes and 

q
is odd.Conlon(1977) 

determines the non–abelian 
q

-subgroups (
q

 prime) of ),( kpqGL  and the non abelian 2-subgroups of ),2( kpSp

. Harada and Yamaki (1979) count the irreducible subgroups of )2,(nGL  for 6n . They do not describe their 

methods
,
and the only groups they list are he insoluble ones for 6n . 

Their count for the soluble groups of these degree is correct . 

Kondrat’ev (1985
,
1986a

,
1986b and 1987) determines the irreducible subgroups of )2,7(GL ,

the insoluble 

irreducible subgroups of )2,8(GL  and ),2,9(GL and the insoluble primitive subgroups of )2,10(GL .Now in this 

paper we getting a Some irreducible subgroups of the group GL(6, )kp . 
 
2.Pereleminares: 

 In this section we determine JS-maximals of )GL(6, kp ,
 for 

kp =1
,
…

,
40 and … 

And we get a complete and irredundant set of conjugacy class representatives of the irreducible soluble subgroups 

for some 
kp . For this work the first we determine the JS-maximals of )GL(2, kp and )GL(3, kp and the end we 

obtaind the tables of ),6( kpGL ,
 for .40,...,1kp  
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2.1–The JS-maximals of )GL(6, kp . 

 Recall that we number the JS-maximales of ),2( kpGL as follows. 
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 And also recall that we number the JS-maximals of ),3( kpGL  as follows: 
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 Therefore the JS-impritives of ),6( kpGL  are listed below. 

).3(mod1,),3(:),6(

,),3(:),6(
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 By use from theorems 2.3 and 2.4 follows that every transitive maximal soluble subgroup of 6S
 is conjugate to 

.2332 SwrSorSwrS
 

 Also the JS-primitives of ),6( kpGL  are listed below. 

).12(mod1),,3(),2(:),6(

),12(mod7),,3(),2(:),6(

),3(mod1,),3(:),6(

),4(mod1,),2(:),6(

),4(mod3,),2(:),6(

,:),6(
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Therefore by use of JS-maximals of ),,6( kpGL The table of ),,6( kpGL For .40,...,1kp  as will follows. 
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 By use from the above we conclude that when ,2kp then there are exactly four Js-maximals
,
namely 

.,, 11863 MandMMM In this part we finding a generating set for ),6(11

kpM and our determined irreducible soluble 

subgroups of 
)2,6(),2,6(),2,6( 863 MMM

 and 
).2,6(1 1M

  
Therefore the irreducible subgroups and generating set of their as follows.  
 
3. Main R esult:  

 In this section we determine the some of irreduclble subgroups of  GL(6,2) , as follows. 
 

3.1.A generating set for ).,6(11

kpM  

 Let F  be the field of 
kp elements

,
let   xx2

 be a primitive polynomial over F ,
and set  
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 Then t  has order 2
, z  has order ,1kp and 

kpt zz  .Let E  be the field of order 
kp2

That is the linear span 

of the powers of z .Then t acting by conjugation induces an automorphism of E  of order 2 which fixes F  elements-
wis. 

 Recall that 
.),3(),6( 2311 CpMFM k 
Let  be a primitive cube root of unity in E ,

say .3)1( kpz Then by use 

of generating set for ),3(3 FM  We have that 
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 It then follows that 
,,,,,,,),6(11  zvucbatFM
where 
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The action of t  on ),3(3 EM  is given in the proof of theorem 5.2.1. 

 If ),3(mod1kp  then t  acts trivially on ucba ,,,  and 
;v
Otherwise we have 

.,,, 232 vvanduubcccbaa ttttt 
 

In the case when ,2kp we have 1  and so  
 

.
11

10
,

11

01
zandzt 

















 

 
Furtheremore

,
 .)( 1

2   I  We now have a polycyclic generating sequence for 
).2,6(1 1M
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3.2-The irreducible subgroups of ).2,6(3M   

 Recall that 
.)2,2()2,2()2,6( 3323 SwrGLSwrMM 
Therefore 3M

 has order .32 44
 Applying lattice and 

then GETIRR shows that there are 19  3M
-conjugacy classes of irreducible subgroups of 3M

.Let irred be a set of 
representatives of these clases.The orders of the groups in irred are as follows.One each of orders 9

,
18

,
81

,
108 

and 12
,
6

,
two each of orders 27 and 324 

,
 three each of orders 162 and 648 and four of orders 54.The two groups 

of order 27 are not isomorphic and not )2,6(GL -conjugate.The two groups of order 324 have derived groups of 
different orders.The three groups of order (162 have pairwise non-isomorphic derived groups.The three groups of 
order 648 are pairwise non-isomorphic because they differ in the orders of their derived groups and their numbers of 

conjugacy classes of elements.This leaves the four groups of order 54.Denote by 27E
the extraspecial group of order 

27 and exponent 3.By calculating the derived groups of the four groups of order 54
,
we see that one has 9C

.One 

has 27E
and two have 33 CC 

. 

 These last two have 27E
 for Fitting subgroup.We know from the theory that leads to the construction of 

)2,6(1 1M
 

that 
).3,2()()( 11112727)2,6( GLMFitMEENGL 

 

 Since )3,2(GL contains a unique conjugacy class of non-central involutions
,
we conclude that the last two groups 

in irred are conjugate in )2,6(GL . 

 Thus there are exactly 18 )2,6(GL -conjugacy classes of irreducible soluble subgroups whose guardian is 
.3M
 

 

3.3-The irreducible subgroups of 
).2,6(6M

 

 Recall that 
.)()2,3()2,6( 237226 SwrCCSwrMM 
 Therefore 6M  has order 2.3

2

.7
2

.Applying 

lattice and then GETIRR shows that there are six 6M
-conjucacy classes of irreducible subgroups of 6M

. 
Let irred be a set of representatives of these classes.The orders of the groups in irred are as follows:one each of 
orders 14

,
42

,
98 and 882

,
 and two of order 294.The two groups of order 294 have derived groups of different 

orders. 

 So these six groups are pairwise non-conjugate in ).2,6(GL  Furtheremore
,
none canbe conjugate to a subgroup 

of 3M  because 3M
 dosenot contain any non-trivial 7-elements.Thus there are exactly six  )2,6(GL -conjugacy classes 

of irreducible soluble subgroups whose guardian is .6M   
 
 

3.4-The irreducible subgroups of ).2,6(8M  

 Recall that .)2,6( 6638 CCM   Therefore 8M
 has order 2.3

2

.7.Applaying lattic and then GETIRR shows that 

there are 14  8M
-conjugacy classes of irreducible subgroups of 8M

 .Let irred be a set of representatives of these 
classes. 

 Five members of irred are  6M
-conjugate to a group of order 54 in irred. This group has for its Fitting subgroup 

an extraspecial group of order 27 and exponent 9.This kind of Fitting subgroup is not allowed for primitive groups 
and so these five groups are impritive. Each of the remaining nine groups in irred contains a cyclic group of order 21

,
which is primitive because it dose not apper on our lists for 

.63 MandM
Thus these nine are primitive.The order 

of these groups are as follows:one each of orders 21
,
42

,
189 and 378

,
two of order 126 and three of order 63.The 

two groups of order 126 have derived groups of different orders.ISOTEST shows that the three groups of order 63 

are pairwise non-isomorphic.Thus there are exactly nine )2,6(GL -conjugacy classes of primitive soluble subgroups 

whose guardian is 
.8M
. 
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